OPELASER PRO

Laser Innovation to bring the future.

WHY DENTISTS SELECT CO2 LASER?
***This information is a feedback from Japanese dentists.
N

Efficient in incision and excision

N

Less discomfort (less postoperative pain, swelling)

N

Less anesthesia and medicine

N

Safe (Low energy, shallow penetration (extinction) laser beam depth)

N

Less necrotic tissue (less postoperative pain, swelling, scar)

N

Less contraction of tissue

N

Blood less surgery (clear surgical sight)

N

Efficient on various treatment (incision, excision, coagulation, healing acceleration etc)

N

Efficient on Implant dentistry

N

Time saving (chair time, total appointment times)

N

Predictable treatment

0.15mm focal spot was achieved, and light concentration performance was enhanced. Manipulator-Maximized operational performance.

"Development objective: a manipulator that is easy to operate"

The fiber-type OPELASER Lite was released in 2002, with the aim being that as a fiber-type laser and as part of the OPELASER series it would have vaporizing and cutting qualities, but its sales were also boosted beyond our expectations by its compact design. At the same time, the manipulator that has become an integral part of the Yoshida tradition was evolving as the 03Series from the first release in 1994 of the 03S, then on to the 03SII and then to the current 03SIISP model. But even though the company’s compact fiber-type Lite model proved popular, the large size was still a problem, for example making it too heavy for hygienists to move easily around the surgery or clinic. Sales representatives gathered a lot of feedback on how the 03SIISP could be improved.

The OPELASER Lite had been designed to highlight its vaporization and incision qualities, but the 03SIISP had a beam delivered by the manipulator which had clarity and sharpness, enabling highly impressive cutting and vaporization performance. The quality of the laser beam and the ease of use of the model made us confident that doctors would want to use the product.

“What’s the difference in the laser delivery between the Lite (fiber-type) and the 03SIIP (manipulator-type)?”

The OPELASER Lite, being a fiber type, appears easy to operate. Actual performance does in fact show that it’s easy to use for low-intensity work, but for high-intensity work the laser point diameter is too large and there is not much concentration depth, making the manipulator more appropriate.

The 03SIISP manipulator-type, on the other hand, appears to be difficult to operate. However, the design is focused on the movement required for treatment procedures, so once the position of the apparatus body is fixed, the laser point size, appropriate concentration depth and responsiveness make it easy to use even for beginners. The only hurdle to overcome is the preconception that it will be cumbersome to use…

Concept: “The manipulator as No.1 choice”

Laser quality brings a new lease of life to the manipulator.
While the OPELASER Lite was still under development in 2001, the plan was devised to have a two-track approach, with the fiber-types in the Lite range and the manipulator-type in the PRO range.
To justify the ‘PRO’ tag would require the installation of a high quality laser to add to the maneuverability already enjoyed by manipulator users.

We set three conditions that the manipulator would have to meet to truly deserve its status as No.1 choice:

N

It had to be easy to use

N

It had to be compact and stylish

N

The laser had to be high quality

New carbon piping used as the material

Previous models had used aluminum pipes, but the pipes’ lack of rigidity meant that not enough precision could be achieved to make full use of the end tip’s qualities. We looked for harder material, and after some research decided that, because with metals the weight increases in relation to the strength of the material, we would opt for non-metal materials. Despite the higher costs involved, we decided to use carbon.

  • Carbon is a strong and light material with a relative density of 1.7
  • i(relative density for aluminum and iron are 2.7 and 7.9 respectively).
  • Carbon fiber fs tensile strength is also twice that of iron.

When carbon fibers are combined with resin to form a hard compound, the composition of the fibers can have a major impact on the material’s characteristics.
For example, by increasing the amount of the material wrapped in a circumferential direction the pipe’s radial strength can increased, while if more material is laid length ways then the pipe’s rigidity can be increased. The common cross-lined pattern indicates equal application of 50% both vertically and horizontally.

For our design, we decided to remove a lot of the vertical material to increase the rigidity. The resulting pipe has the same resistance to bending as iron, but is as light as aluminum.

Using carbon material means that even if the diameter is slimmed down from the Φ20 of previous models to Φ17, the increase in strength means increased precision.
We eventually reached a level that would enable the qualities of the end tip to be fully utilized.

Towards the ideal design

The draft design delivered by the design team was for a new and exciting product.
But would we be able to make it a reality? The task before us seemed impossible.

The plans emphasized natural curves and lines, with a sleek, integrated design right up to the handpiece. However we looked at it, the three dimensional images on paper appeared impossible to render in physical form.

One initial suggestion was that we might make the hinge blocks using die casts, but after several problems were noted with this method, such as peeling paint and scratches, and the issue with color alumite treatments offering low precision even at non-color manufacturing processes, we decided to make the blocks using mechanized techniques.

However, to maintain the design integrity, the aluminum parts underwent alumite treatment, and the pipes, which were the only part made from a different material, were painted to resemble alumite. We worked hard to reach our design objectives, reviewing structure and form issues on a day-to-day basis, and holding meetings with our Ibaragi plant on manufacturing issues, a process that overall took longer than three months.

The color alumite treatment also involved time considerations affected by the amount of pigment used in the dye, the required immersion time and the size of the part to undergo the treatment, all of which contributed to a range of different treatment times. Through the cooperation of the Production Technology Department, the different parts were each produced to a specific timeline, which enabled the coloring process to be managed efficiently.
Alumite is the creation of an anodized layer on the surface of aluminum
(the layer is created by the application of a current to diluted sulfuric acid).
Micro-holes on the surface allow pigment dye to seep through, coloring the material.

Manipulator maneuverability

We assessed the angles of the manipulator under different treatment positions, and came across some positions from which it was unable to reach the oral cavity.
We were torn between wanting good reach for the manipulator while also wanting to achieve a compact design.

Using 3D CAD software and prototypes, we realized that it was important to get a balance between long and short pipes. We also realized that we could reach our objective of an apparatus body that was small enough to allow the dentist to have it as his or her side.

Next we looked at getting a balance in the spring mechanism. By losing a lot of weight, we were able to achieve a slimmed down shape but we were also able to achieve a much lower overall weight. This was an essential element in our aim to design a stylish manipulator.

We considered a variety of ideas for spring shapes and mechanisms. We wanted the manipulator to be responsive and flexible when raised, and resistant and sturdy when in a resting position. We also wanted to distribute the weight evenly over a wide area, and ensure strong resistibility. While we could reach those goals by focusing on quantitative calculations, the prototypes all had a rasping sound in the springs…
We were finally able to achieve our goal by optimizing the spring shape, the conceptual approach to the clearance gap, and materials used in for manufacturing.

A Compact main body

The opinion of senior management that it would be good to have the Manipulator on a Lite frame was based on the view that the contents were generally the same, and the results would be a product that was still strong but which was also light, which sounded easy on paper but which presented various issues to the development team.
Whatever method we chose, senior management wanted a manipulator that was as light as the fiber-type models. We checked manipulators manufactured by other companies and found that 30kg was heavy, so we aimed for 25kg. That would mean a 40% reduction in the 42kg 03SIISP. But the frames for the OPELASER Lite didn’t have the strength to hold the manipulator alone.

Previous models had frames that supported oscillators or optical devices, but we chose a different approach altogether, separating the part touching the optical axis from the frame, and devising a structure whereby the weight borne by the frame is not conveyed to the optical device. Using this technique we removed the need to make the frame stronger than it needed to be, and achieved our objective of 25kg. The technique also contributes to a steadier optical axis by preventing weight being transmitted to the optical part even if pressure is applied to the manipulator.

Focus function

One of our main objectives was to make sure the manipulator had a sharp laser concentration.
We were able to reduce the laser point diameter from Φ0.4mm to Φ0.15mm, and at the same energy density output as the 03SIISP achieved a value to the factor of seven. This raised the vaporization values, and enabled sharp incisions at low outputs, also helping to prevent blood loss and minimizing the clotting layer.

Furthermore, defocus irradiation on handpiece release is wider than previous models, improving treatment results in narrow oral cavities, with maximum output levels of 7W. Such specifications allow for a wider range of treatments and improved results.

A sharp energy concentration and high output levels, together with its compact and stylish exterior, make the manipulator type CO2 laser apparatus the best choice for professionals.

The OPELASER PRO was developed through the shared vision and commitment of the development team, the production department and partner companies to make it the best possible laser apparatus, a vision and commitment that we feel sure you will recognize once you’ve experienced the style and ease-of-use for yourself.

Yoshida CO2 Laser Testimonials

Manipulator designed for ease of operability

The new multi-handling system differs from previous models which used a weighted balancing system, and is remarkably light and responsive. It retains its position when irradiation is temporarily stopped and the handpiece released during treatment, enabling efficient treatment processes..

Enhanced Working range for most efficient development

The second arm is 100mm longer than previous models, so wherever the device is placed the doctor has flexibility with treatment position.

Difference between the Manipulator and Fiber

This graph shows the height of energy density for the OPELASER PRO laser beam. The manipulator type delivers a highly concentrated laser with no wavelength dispersion.

Handpiece Point

To fully utilize the potential of CO2 lasers, a high energy-density and low irradiation energy loss laser is required. The OPELASER PRO is a manipulator-type laser that comfortably meets these conditions. The smallest point of contact between laser and target area, together with high energy-density make non-invasive treatment possible.

Previously unavailable diameter of Φ0.15mm

The sharpest incisions yet possible can be made using the laser’s Φ0.15mm. As well as cutting and removals, a variety of other procedures are also possible, enabling the doctor’s understanding and skills to be fully reflected in the chosen course of treatment.

Cooling Air

Cooling air emitted from the handpiece point effectively cools the area of laser irradiation, suppressing the patient’s pain. The OPELASER’s unique technology provides gentle treatment for the patient.

Green guide light for easy identification of irradiation area

A guide light is essential for high quality, precise treatment processes. The OPELASER PRO’s guide light is set by default to a green light that can easily be seen in the oral cavity. The guide light helps prevent mistakes in irradiation location and reduces dentist eye strain. The brightness of the guide light can be controlled from the control panel.

Slimmer and 40% lighter than previous models

The manipulator is made from lightweight and highly durable carbon rods. When weighed with the apparatus body it is 40% lighter than previous models, and is also slimmer. It is easy to move around so it doesn’t need to have a designated storage location.

Control Panel

The control panel’s simple design is user friendly and easy to operate.

1 ) Output display window
Displays CO2 laser output

2 ) Output settings keys
Set the CO2 laser output level

3 ) Output mode control
Choose Continuous Wave or Super Pulse setting

4 ) Time display window
Displays pulse irradiation time

5 ) Pulse irradiation Setting keys
Set the time for pulse irradiation

6 ) Irradiation mode key
Choose irradiation mode (Continuous Wave, Repeat Irradiation or Pulse)

7 ) Function key
Set the volume, irradiation interval length, timer and guide light brightness

8 ) Cooling air key
Turn the cooling air on or off

9 ) Tip mode key
Cuts air-flow when using needle tip

10 ) READY key
Finalize the irradiation conditions

11 ) Preset key
Call preset irradiation conditions

“We have utilized the Yoshida Opelaser Pro II CO2 Laser for approximately five years. While it has great value and ROI on many procedures such as exicisional biopsies, gingival controuing, crown lengthening, frenectomies, etc; I fell it’s value is as an adjunct to a variety of procedures performed daily in dental practices. Utilization for incision, sulcus control post crown preparation, coagulation post extractions and apthous ulcer treatment are just a few of the procedures undertaken with laser treatment with goal of decreasing the patient’s discomfort during the treatment and to speed post-operative healing”

Dr. Rovert Pauley

GA

“I prefer the CO2 laser over the diode because it has less heat transfer to the tissue and much less post-op discomfort. It is ideal for those deep restorations that still possess biologic width. I can be much more precise with it. It is also indicated for the treatment of ailing implants, uncovering, and a myriad of other soft tissue procedures”

Dr. Nelson Daly

LA

“The Yoshida Opelaser Pro has added so much to out practice. With implant surgeries, extractions, esthetic soft tissue contouring, and much more we are better dentists because of our laser. The ease of use and the clear field after a bloodless incision make difficult procedures that much easier. And the service and support from Yoshida to keep the laser at top performance is the best I’ve received from a dental company. Best of all, our patients are healthier and much more comfortable because we use the Opelaser Pro. We love it!”

Dr. Joey de Graffenried

TX

“The CO2 laser from Dental Solution USA is an integral part of my armamentarium. On almost a daily basis I employ this device to help achieve outstanding results for my patients.”

Dr.Paul Rosen

New York City

OPELASER PRO

Contact us for more information